
References
ZSIM: Fast and Accurate Microarchitectural Simulation of Thousand-Core Systems", 
Sanchez and Kozyrakis, ISCA-40, June 2013

Enhancing an Out-Of-Order Processor for 
Latency-Critical Cloud Applications
Abraham Gonzalez, Ronald MacMaster, Barak Lidsky, Justin Nguyen, Ryan Syed
Mentors: Mattan Erez and Haishan Zhu
November 20th, 2017

Background and Objective
• Datacenters consolidate computational power to a single physical location, usually 

for power and cost savings.
• Many datacenters underutilize or waste resources in order to ensure quality of 

service (QoS) (high deadline completion rates) for latency-critical tasks.
• Objective: Enhance resource utilization for datacenters so that latency-critical tasks 

and latency-noncritical tasks can run at the same time and share resources.

Acknowledgements
We would like to thank Dr. Erez for his guidance and the opportunity to learn more 
about the field of parallel computer architecture. Additionally, we would like to thank 
Haishan Zhu for providing the computing resources and advice necessary to work on 
the project.

Design Summary
• In order to replicate datacenter behavior, our team decided to modify ZSIM, an 

academic, timing-based, processor simulator.
• Our solution consists of two parts: implementing simultaneous multi-threading (SMT)

on ZSIM and designing different arbitration schemes for increased utilization.
• Specifications to fulfill these tasks are outlined below in Figure 1 .

Simultaneous Multi-threading
• Simultaneous multi-threading is a type of multiprocessing that can run multiple 

instruction threads at the same time by sharing a single processor’s resources.
• In order to have a single core receive two instruction threads, our team added the new 

simultaneous multi-threading window (SMT Window) shown in Figure 2.
• Additionally, changes were added to ZSIM’s timing model to simulate contention.
• As shown below, all changes were built into a new simulator core called the SMT Core.

Future Work
• With simultaneous multi-threading completed, future work can be focused on 

designing new arbitration schemes for latency-critical task performance.
• One could increase the number of processes running on each SMT Core and have 

multiple cores run concurrently to match current datacenter behavior.
• A cycle-based simulator could be used instead ZSIM, a timing-based simulator, for 

cycle-level accuracy and modeling.

Arbitration Schemes
• After the new SMT Core is implemented , we will need to design more arbitration 

schemes to improve resource utilization and performance.
• Arbitration scheme – an algorithm that determines which task receives resources 

when multiple tasks contend with each other on a single core.
• Shown in Figure 3, we implemented a fair arbitration scheme that equally filled the 

SMT Core with instructions from two different threads and ran the instructions one 
after the other in a round-robin fashion.

• Allows resources to be equally split between the two threads.

Conclusion
• Implemented a working version of simultaneous multi-threading on ZSIM.
• We were able to run smaller micro-benchmarks on the new core but experienced 

issues with running larger commercial benchmarks such as SPEC.
• Only designed a fair arbitration scheme due to timing constraints and difficulties in 

implementing simultaneous-multithreading.
• Cleaned up and refined the code base so that we could release our results to the 

ZSIM GitHub repository. Our work will be useful since few academic simulators have 
simultaneous multi-threading implemented.

Specification Description

Processes per Simulator Core (PPSC) PPSC ≥ 2

Combined Thread Time (Cyclescomb) Cyclescomb ≤ Cyclesthread1 + Cyclesthread2

High Workload Punctuality (Pw) Pw ≥ 0.7 or 70%

High Workload Reliability (Rw) Rw ≥ 0.8 or 80%

Figure 2: SMT Core and SMT Window

Figure 1: Design Specifications

Figure 3: Arbitration and Instruction passing

Testing Results
• Our new SMT Core is generally better than ZSIM’s original OOO Core.
• As shown in Figure 6, all of the SMT Core cycle counts are less than those of the 

OOO Core, with the exception of the branch misprediction microbenchmark. This 
indicates that the SMT Core is properly emulating simultaneous multi-threading.

• Figure 7 shows the percentage speedup of our SMT Core over the OOO Core. It 
shows this speedup for each microbenchmark and two different reorder buffer 
(ROB) sizes. It shows that our SMT Core is particularly better than the OOO Core 
when there is a low miss rate for the data and instruction caches and high miss rate 
for data cache.

Testing Methods
• Tested the simulator using several microbenchmarks. 
• Tests with names ending in “good” were our baseline tests that do not intentionally 

cause instruction cache misses, data cache misses, or branch mispredictions. 
• Tests with names ending in “miss” stressed these misses and mispredictions to see 

how well our simulator performs under unusual conditions.
• Each microbenchmark was run by itself on the original ZSIM Core (also known as the 

OOO Core) and with a duplicate of itself on the SMT Core.
• Each micro-benchmark test on the OOO Core and SMT Core was run with different 

instruction cache, data cache, and reorder buffer sizes through a series of 
configuration files shown in Figure 4-5.

Figure 4-5: OOO and SMT configuration files

branch_good branch_miss dcache_good dcache_miss icache_good icache_miss

64 entry 
ROB

12.5% -17.4% 48.0% 39.4% 43.4% 12.4%

128 entry 
ROB

12.7% -17.0% 46.4% 39.4% 41.6% 11.9%

Figure 7: Percentage Speedup from OOO Core to SMT Core

Figure 6: OOO Core vs SMT Core Comparison

0.0E+00

5.0E+06

1.0E+07

1.5E+07

2.0E+07

2.5E+07

3.0E+07

branch_good branch_miss dcache_good dcache_miss icache_good icache_miss

C
yc

le
 C

o
u

n
ts

Micro-Benchmark with 32K L1i size and 64K L1d size

OOOCore with 64 entry ROB OOOCore with 128 entry ROB

SMTCore with 64 entry ROB SMTCore with 128 entry ROB


